DESIGN BASIS ACCIDENT ANALYSES FOR SUNPP UNIT 1 AND RNPP UNIT 1

Presentation materials for

Annual Information Forum on Safety Assessment of NSSS with WWER and RBMK types of Reactor

Obninsk, October 16-20, 2000

Developed by South-Ukrainian and Rivne NPP in cooperation with "Energorisk, Ltd"

Contents

- Objectives and limitations
- Methodology Basis
- DBA Analysis Organization
- Status of DBA Analyses
 - Rivne NPP Unit 1
 - South Ukrainian NPP Unit 1

Objectives and Limitations

- Perform deterministic analyses using internationally accepted practice to support development of SAR Section "Accident Analysis" for SUNPP-1 (WWER-1000/302) and RNPP-1 (WWER-440/213)
- Violations during fuel and radioactive waste management are not included
- Analysis of reactivity and power distribution anomalies is performed with point reactor kinetics
- Radioactive release is calculated with limited level of sophistication

Methodology Basis

- Deterministic approach comparable to that used in international practice is applied, considering
 - Ukrainian regulatory documents
 - IAEA recommendations
- DBA Analysis is considered to be subject to quality assurance program, which includes a set of procedures and guidelines

DBA Analysis Organization

Data Collection and Analysis

^{*} Verification includes internal verification and external review

Computer Code Used

^{*} ORIGEN calculates initial fission products inventory in the core, MELCOR gives radioactive release. Personal doses are obtained from engineering calculations

Development of Computer Code Input Data Decks (RELAP5)

^{*} Verification includes internal verification and external review Validation includes simulation of well documented transient for reference plant

Grouping of Events

- Grouping of initiating events is based on leading physical phenomena induced by event itself:
 - Increase in heat removal by secondary side
 - Decrease in heat removal by secondary side
 - Decrease in reactor coolant flow rate
 - Reactivity and power distribution anomalies
 - Increase in reactor coolant inventory
 - Decrease in reactor coolant inventory
 - Anticipated transients without scram
 - Radioactivity release from subsystem and components

Categorization of Events

- Using results of PRA Level 1, initiating events of each group are classified based on anticipated frequency of occurrence:
 - Transients violations of normal operation, which are expected to occur during plant life time (i.e., expected frequency of occurrence not less than 3.3·10⁻² year⁻¹)
 - Accidents low probability events, which are not expected to occur during plant life time (i.e., expected frequency of occurrence less than 3.3·10⁻² year⁻¹)

Acceptance Criteria

- Acceptance criteria are aimed to prevent damage of safety barriers (i.e., fuel, cladding, reactor coolant pressure boundary, containment) against uncontrolled release of radioactivity, and radiological impact
- More stringent requirements are applied to events with higher anticipated frequency of occurrence

List of Acceptance Criteria

• Fuel integrity is ensured

- Maximum fuel temperature should not exceed UO₂ melting point (i.e., 2840 °C for fresh fuel, and 2570 °C for burned fuel) at any axial location within any fuel rod
- Maximum radially-averaged fuel enthalpy should not exceed 963 kJ/kg (230 cal/g) for fresh fuel, and 840 kJ/kg (200 cal/g) for burned fuel at any axial location within any fuel rod

Fuel cladding integrity is ensured

- Minimum DNBR should remain higher than 1.0 with confidence probability not less than 95%
- Maximum fuel clad temperature should not exceed 1200 °C at any axial location within any fuel rod

• Integrity of primary and secondary system pressure boundary is ensured

- Pressure in reactor coolant system should not exceed 115% of design pressure (i.e., 207 bar for SUNPP-1, and 158 bar for RNPP-1)
- Pressure in steam generator secondaries and main steam system should not exceed 115% of design pressure (i.e., 92 bar for SUNPP-1, and 63 bar for RNPP-1)

Containment integrity is ensured

- Pressure of steam-gas mixture should not exceed 5.0 bar for SUNPP-1, and 2.5 bar for RNPP-1
- Temperature of steam-gas mixture should not exceed 150°C for SUNPP-1, and 127°C for RNPP-1

• Allowed radioactive doses are not exceeded at boundary of protection zone:

Equivalent personal doses calculated for the worst meteorological conditions should not exceed 0.3 Sv/year (30 REM/year) for child thyroid due to inhalation, and 0.1 Sv/year (10 REM/year) for whole body due to external irradiation

Analysis of Events

- Based on engineering judgement, initiating events are classified into two broad groups:
 - Quantitatively analyzed events, which may potentially challenge the acceptance criteria
 - Qualitatively analyzed events, which produce definitely less severe consequences

Documentation of Results

(Quantitative analysis)

- Each Summary report presents structured information to meet documentation requirements:
 - General characteristic of events, addressing impact of events on the safety barriers
 - Acceptance criteria applied
 - Selection of initial and boundary conditions for analytical model
 - Analysis of transient progression
 - Conclusions on that how the acceptance criteria are met
 - Plots of calculation results

Status Of DBA Analyses

DBA Initiating Event Group	RNPP-1	SUNPP-1
Increase in heat removal by secondary side	Review in progress	Review in progress
Decrease in heat removal by secondary side	Analysis in progress	Review in progress
Decrease in reactor coolant flow rate	Completed	Completed
Reactivity and power distribution anomalies	Review in progress	Completed
Increase in reactor coolant inventory	Completed	Completed
Decrease in reactor coolant inventory	Review in progress	Analysis in progress
Anticipated transients without scram	Analysis in progress	Completed
Radioactivity release from subsystem and components	Analysis in progress	Analysis in progress

Increase in heat removal by secondary side

Initiating Event	Category/ Frequency*	Type of analysis	DNBR	Pprimary	Psecondary	T fuel	P cont	T cont	# of calculations
Main steam line break	A/ 8·10 ⁻³	Quantitative	OK	OK	OK	OK	OK	OK	5
SG SV stuck open	T/ 7.7·10 ⁻²	Quantitative	OK	OK	OK	OK	_	_	1
BRU-K stuck open	T/ 7.7·10 ⁻²	Quantitative	OK	OK	OK	OK	_	_	1
BRU-A stuck open	T/ 7.7·10 ⁻²	Engineering Analysis							
Control system malfunctions resulting in an increase in turbine steam flow	T/ 2.9·10 ⁻²	Engineering Analysis							
FW system malfunctions resulting in a decrease in FW temperature	T/ 8.1·10 ⁻²	Engineering Analysis							
FW system malfunctions resulting in an increase in FW flow	T/ 4.5·10 ⁻²	Engineering Analysis							

^{*}IE frequencies are taken from Rivne NPP Unit 1 probabilistic risk assessment.

Decrease in heat removal by secondary side

	Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	P cont	Tcont	# of calculations
Loss	of external load	T/ 9.7 ·10 ⁻²	Quantitative	OK	OK	OK	_	_,	2
Loss suppl	of nonemergency AC power	T/ 2.9 ·10 ⁻²	Quantitative	OK	OK	OK	_	_	1
Inadv	vertent closure of FASIV	T/ 3.4·10 ⁻²	Quantitative	OK	OK	OK	_	_	1
Loss	of turbine condenser vacuum	T/ 5.5·10 ⁻²	Quantitative	OK	OK	OK	_	_	2
	Trip of one turbine	T/ 1.72	Engineering Analysis						
	water pipeline breaks inside and de containment	A/ 1.3·10 ⁻³	Quantitative	OK	OK	OK	OK	OK	6
	Trip of one MFW pump	T/ 0.409	Engineering Analysis	•			:		
	Decrease in FW flow to one SG	T/ 8.7·10 ⁻²	Engineering Analysis						

Decrease in a reactor coolant flow rate

Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	# of calculations
Trip of three or less MCP	T/ 0.5	Quantitative	OK	OK	OK	6
Break of MCP shaft	A/ 8.8·10 ⁻³	Quantitative	OK	OK	OK	2
Trip of four or more MCP	T/ 9.8·10 ⁻²	Quantitative	OK	OK	OK	2
MCP rotor seizure	A/ 6.4·10 ⁻³	Quantitative	OK	OK	OK	2
Inadvertent closure of MGV	A/ 7.9·10 ⁻³	Engineering Analysis				-

Reactivity and power distribution anomalies

	Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	Tfuel	I_{UO2}	# of calculations
Cont	rol assembly ejection	A/ 7.9·10 ⁻³	Quantitative	OK	OK	OK	OK	OK	5
Start-	-up of inactive RCS loop	T/ 1.2·10 ⁻²	Quantitative	OK	OK	OK	_	_	2
	entrolled withdrawal of control anbly group	T/ 1.8·10 ⁻²	Quantitative	OK	OK	OK	_	_	6
	CVCS malfunctions resulting in a decrease in boron concentration	T/ 1.2 ·10 ⁻²	Engineering Analysis						

Increase in reactor coolant inventory

Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	# of calculations
Spurious operation of HPIS	T/ 1·10 ⁻²	Quantitative	OK	OK	OK	1
CVCS malfunctions resulting in an increase in reactor coolant inventory	T/ 2.9·10 ⁻²	Quantitative	OK	OK	OK	1

Decrease in reactor coolant inventory

Initiating Event	Category/ Frequency	DNBR	Psecondary	PCT	Pcont	Tcont	# of calculations
Break of I&C pipe (13mm)	T/ 0.26	OK	_	_	_	_	1
Drainage system line break (25mm)	$A/3.10^{-3}$	_	_	OK	_	_	1
Make-Up system line break (73mm)	$A/3.10^{-3}$	_	_	OK	_	_	1
Break of pipeline between PRZ and PRZ PORV (88mm)	A/ 4.2·10 ⁻⁴	_	_	OK	_	_	1
PRZ spray line break (90mm)	A/ 4.2·10 ⁻⁴	_	_	OK	_	-	1
PRZ safety valve stuck open	A/ 2.4·10 ⁻²	_	_	OK	_	-	2
HPIS line break (113mm)	A/ 4.2·10 ⁻⁴	_	_	OK	_	_	1
HA surge line break (233mm)	A/ 9.7·10 ⁻⁵	_	_	OK	_	-	1
PRZ surge line break (277mm)	A/ 9.7·10 ⁻⁵	_	_	OK	_	-	1
DEGB of cold leg (2×500mm)	A/ 9.7·10 ⁻⁵	_	_	OK	OK	OK	2
DEGB of hot leg (2×500mm)	A/ 9.7·10 ⁻⁵	_	-	OK	OK	OK	2
SG tube rupture	T/ 4·10 ⁻²	OK	_	-	_	-	1
SG collector cover lift-up	A/ 5·10 ⁻³	_	OK	OK	_	-	2

Anticipated transients without scram

Initiating Event	Category/ Frequency	Type of analysis	PCT	Pprimary	Psecondary	# of calculations
Trip of four or more MCP	A/ 3·10 ⁻⁶	Quantitative	OK	OK	OK	1
Loss of turbine condenser vacuum	A/ 1.5·10 ⁻⁶	Quantitative	OK	OK	OK	2
Loss of feedwater flow	A/ 3.7·10 ⁻⁶	Quantitative	OK	OK	OK	1
Turbine trip	A/ 1·10 ⁻⁵	Quantitative	OK	OK	OK	1
Loss of external load	A/ 3.1·10 ⁻⁶	Engineering Analysis				

Radioactivity release from subsystem and components

Compliance to acceptance criteria

Initiating Event	Category/ Frequency	Personal Dose
Steam line break outside containment	A/8·10 ⁻³	OK
DEGB of RCS loop	$A/9.7 \cdot 10^{-5}$	In progress
Steam generator collector cover lift-up	A/ 5·10 ⁻³	In progress
Let-down system line break outside containment	A/ 1.7·10 ⁻²	In progress

Increase in heat removal by secondary side

Initiating Event	Category/ Frequency*	Type of analysis	DNBR	Pprimary	Psecondary	T fuel	P cont	T cont	# of calculations
Main steam line break	A/ 4.4·10 ⁻⁴	Quantitative	OK	OK	OK	OK	OK	OK	2
MSH break	A/ 4.4·10 ⁻⁴	Quantitative	OK	OK	OK	OK	_	_	1
BRU-K stuck open	T/ 3.1·10 ⁻²	Quantitative	OK	OK	OK	OK	_	_	1
BRU-A stuck open	T/ 3.1·10 ⁻²	Quantitative	OK	OK	OK	OK	_	_	1
SG SV stuck open	T/ 3.1·10 ⁻²	Engineering Analysis							
FW system malfunctions resulting in a decrease in FW temperature	T/ 0.17	Engineering Analysis							
FW system malfunctions resulting in an increase in FW flow	T/ 0.13	Engineering Analysis							

^{*}IE frequencies are taken from SUNPP Unit 1 probabilistic risk assessment.

Decrease in heat removal by secondary side

	Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	P cont	Tcont	# of calculations
Loss	of external load	T/ 8.7·10 ⁻²	Quantitative	OK	OK	OK	_	_	1
	Inadvertent closure of TSV	T/ 0.54	Engineering Analysis						
Loss	of nonemergency AC power	T/ 1.0 ·10 ⁻²	Quantitative	OK	OK	OK	_	_	1
Inadv	rertent closure of FASIV	T/ 3.7·10 ⁻²	Quantitative	OK	OK	OK	-	_	1
Loss	of turbine condenser vacuum	T/ 0.12	Quantitative	ОК	ОК	ОК	-	-	1
Feedy	water pipeline break inside containment	A/ 6·10 ⁻³	Quantitative	OK	OK	OK	OK	OK	2
	Feedwater system malfunctions resulting in a decrease in FW flow	T/ 0.14	Engineering Analysis						
Main	feedwater collector break	A/ (57)·10 ⁻³	Quantitative	OK	ОК	OK	-	_	1

Decrease in a reactor coolant flow rate

Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	# of calculations
Trip of two out four MCP	T/ 0.15	Quantitative	OK	OK	OK	1
Trip of one MCP	T/0. 21	Engineering Analysis				
Trip of four MCP	T/ 1·10 ⁻³	Quantitative	OK	OK	OK	1
MCP rotor seizure	A/ 9.9·10 ⁻³	Quantitative	OK	OK	OK	1
Inadvertent closure of MGV	A/ 8.8·10 ⁻³	Engineering Analysis				
Break of MCP shaft	A/ 2.5·10 ⁻³	Quantitative	OK	OK	OK	1

Reactivity and power distribution anomalies

Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	Tfuel	$I_{ m UO2}$	# of calculations
Control rod ejection	A/ -	Quantitative	OK	OK	OK	OK	OK	1
Start-up of inactive RCS loop	T/ -	Quantitative	OK	OK	OK	_	_	1
Uncontrolled withdrawal of control rod group	T/ 1·10 ⁻²	Quantitative	OK	OK	OK	_	_	1
CVCS malfunctions resulting in a decrease in boron concentration	T/ 1·10 ⁻²	Engineering Analysis						

Increase in reactor coolant inventory

Initiating Event	Category/ Frequency	Type of analysis	DNBR	Pprimary	Psecondary	# of calculations
S malfunctions resulting in an increase ctor coolant inventory	T/-	Quantitative	OK	OK	OK	1
Spurious operation of HPIS	T/1·10 ⁻²	Engineering Analysis				

Decrease in reactor coolant inventory

Initiating Event	Category	DNBR	Psecondary	PCT	Pcont	Tcont	# of calculations
Break of I&C pipe (13mm)	T/ 0.21	OK	_	_	_	_	1
Drainage system line break (32mm)	A/ 3·10 ⁻³	_	_	OK	_	_	1
Make-up system line break (64mm)	A/ 4.2·10 ⁻⁴	_	_	ОК	_	_	1
PRZ safety valve stuck open	A/ 1.7·10 ⁻²	_	_	OK	-	_	1
HPIS line break (133mm)	A/ 4·10 ⁻⁶	_	_	OK	_	_	1
PRZ spray line break (181mm)	A/ 4·10 ⁻⁶	_	_	OK	-	_	1
HA surge line break (279mm)	A/ 4·10 ⁻⁶	_	_	OK	-	_	1
PRZ surge line break (346mm)	A/ 4·10 ⁻⁶	_	-	OK	-	-	1
DEGB of cold leg (2×850mm)	A/ 4·10 ⁻⁶	_	-	OK	_	_	1
DEGB of hot leg (2×850mm)	A/ 4·10 ⁻⁶	_	-	OK	OK	OK	1
SG tube rupture (2×13mm)	T/ 4.6 ·10 ⁻²	OK	OK	_	_	_	1
SG collector cover lift-up (80mm)	A/ 2·10 ⁻³	_	OK	OK	_	_	1

Anticipated transients without scram

Initiating Event	Category/ Frequency	Type of analysis	PCT	Pprimary	Psecondary	# of calculations
Loss of feedwater flow	A/ 3·10 ⁻⁶	Quantitative	OK	OK	OK	1
Loss of turbine condenser vacuum	A/ 3.7·10 ⁻⁶	Quantitative	OK	OK	OK	1
Turbine trip	A/ 1.7 · 10 ⁻⁵	Engineering Analysis				
Inadvertent closure of FASIV	A/ 1.2 · 10 ⁻⁶	Engineering Analysis				
Loss of external load	A/ 2.7·10 ⁻⁶	Engineering Analysis				

Radioactivity release from subsystem and components

Compliance to acceptance criteria

Initiating Event	Category/ Frequency	Personal Dose		
Steam line break outside containment	A/ 4.4·10 ⁻⁴	OK		
DEGB of RCS loop	A/ 4·10 ⁻⁶	In progress		
Steam generator collector cover lift-up	$A/2\cdot10^{-3}$	In progress		
Let-down system line break outside containment	A/ 1·10 ⁻³	In progress		